职称:副教授

电话:010-62794365

E-mail address:jiangfh@tsinghua.edu.cn

个人简介

蒋方华,男,1982年生于湖南祁阳,力学博士,清华大学航天航空学院长聘副教授、博导。从2000年9月本科起,一直在清华航院学习和工作,从事航天动力学方向的应用基础研究,入职以来主要研究空间探测轨道设计与轨迹优化,主讲课程“理论力学”、“航天动力学”。发表航天领域SCI期刊论文50余篇,研究成果被中美俄等国多位院士、SCI期刊主编、航天总师等好评和采用。作为主力队员或指导教师参加国际空间探测轨迹优化大赛获得1冠军2亚军1季军,主持国家自然科学基金项目及课题5项,作为研究骨干或子课题负责人参加国家重点研发项目2项。任SCI期刊《Aerospace》、EI期刊《Astrodynamics》等编委、美国AIAA终身高级会员,获得省部级科技一等奖2项,2020年获得国家自然科学基金优秀青年基金资助。

通讯地址:清华大学蒙民伟科技大楼N931室,100084

电话:010-62772936

邮箱: jiangfh@tsinghua.edu.cn

教育背景

2007.9~2009.7 清华大学航天航空学院 力学 博士研究生(硕转博)

2004.9~2007.7 清华大学航天航空学院 力学 硕士研究生

2000.9~2004.7 清华大学工程力学系 工程力学 本科生

工作履历

2022.8~至今 清华大学航天航空学院 教研系列长聘副教授

2016.6~2022.8 清华大学航天航空学院 教研系列准聘副教授

2014.12~2016.6 清华大学航天航空学院 副教授

2011. 6~2014.12 清华大学航天航空学院 助理研究员

2009. 7~2011.6 清华大学航天航空学院 博士后

学术兼职

2021.2~至今 《Aerospace》(SCI) 编委

2021.1~至今 《动力学与控制学报》 青年编委

2016.1~至今 《Astrodynamics》(EI) 创刊编委

2015.12~至今 美国航空航天学会 终身高级会员

2018.10~2021.10 《清华大学学报(自然科学版)》(EI) 特约编委

研究领域

航天器轨道动力学、空间探测轨道设计与轨迹优化、遥感卫星对地成像任务规划仿真、高精度卫星轨道建模与仿真计算。

研究概况

本人从事航天动力学领域的应用基础研究——空间探测连续推力轨迹优化与航天器相对运动。轨迹优化属于动力学反问题,旨在设计探测器的最优飞行轨迹和控制律。高比冲电推进空间探测器推进效率高,应用前景广阔,但产生的连续小推力使轨迹优化具有强非线性、强数值敏感性和优化变量初值猜测困难。本人致力于连续推力轨迹优化理论、方法与应用研究,主要学术创新贡献包括:(1)对探测器在天体间大范围飞行问题,建立和发展了连续推力轨迹同伦优化理论与高效率计算方法,解决强非线性、数值敏感、初值猜测等难题;(2)对探测器绕目标天体小范围自由相对运动问题,提出了相对运动解析分析方法,揭示了广泛存在的奇特现象。建立的理论和方法应用于载人航天、遥感卫星等重大工程,解决了远距离导引和卫星对地成像的优化难题;应用于国际轨迹优化专业竞赛,获得1冠军2亚军1季军。

奖励与荣誉

1. 2023年4月,中国空间轨道设计竞赛突出贡献个人

2. 2022年9月,清华大学2021年度先进集体成员

3. 2022年6月,清华大学2021年度教学优秀奖

4. 2021年11月,第11届国际空间探测轨迹优化大赛冠军

5. 2021年5月,第二届全国航空航天类专业本科毕设成果交流会特等奖指导教师

6. 2020年9月,国家自然科学基金优秀青年科学基金获得者

7. 2019年6月,第10届国际空间探测轨迹优化大赛亚军

8. 2019年1月,上海市技术发明奖一等奖

9. 2017年12月,军队科学技术进步一等奖

10. 2015年8月,第8届国际空间探测轨迹优化大赛亚军

11. 2010年11月,第5届国际空间探测轨迹优化大赛季军

12. 2010年5月,第2届中国空间轨道设计竞赛冠军

13. 2009年7月,清华大学优秀博士论文二等奖和优秀博士毕业生荣誉称号

学术成果

发表中英文论文、论著如下:

[1] Zhang Z, Zhang N, Guo X, Wu D, Xie X, Li JY, Yang J, Chen SY, Jiang Fanghua, Baoyin HX, Li HY, Zheng HX, Duan XW. GTOC 11: Results from Tsinghua University and Shanghai Institute of Satellite Engineering[J]. Acta Astronautica, 2023, 202: 819-828.

[2] Yang J, Zhang Z, Jiang Fanghua, Li JF. Low-energy transfer design of heliocentric formation using lunar swingby on the example of LISA[J]. Aerospace, 2023, 10(1): 18.

[3] Xie X, Jiang Fanghua, Li JF. Design and optimization of stable initial heliocentric formation on the example of LISA[J]. Advances in Space Research, 2023, 71(1): 420-438.

[4] Wu D, Guo X, Jiang Fanghua, BaoyinHX. Atlas of optimal low-thrust rephasing solutions in circular orbit[J]. Journal of Guidance Control and Dynamics, 2023, 46(5): 856-870.

[5] Wang ZW, Cheng L, Jiang Fanghua. Approximations for secular variation maxima of classical orbital elements under low thrust[J]. Mathematics, 2023, 11(3): 744.

[6] Guo X, Ren D, Wu D, Jiang Fanghua. DNN estimation of low-thrust transfer time: Focusing on fast transfers in multi-asteroid rendezvous missions[J]. Acta Astronautica, 2023, 204: 518-530.

[7] Zhang HJ, Ren D, Jiang Fanghua. A beam search-based channel allocation method for interference mitigation of NGSO satellites with multi-beam antennas[J]. Aerospace, 2022, 9(4): 177.

[8] Wu D, Zhang TX, Zhong Y, Jiang Fanghua, Li JF. Analytical shaping method for low-thrust rendezvous trajectory using cubic spline functions[J]. Acta Astronautica, 2022, 193: 511-520.

[9] Wu D, Cheng L, Jiang Fanghua, Li JF. Analytical costate estimation by a reference trajectory-based least-squares method[J]. Journal of Guidance Control and Dynamics, 2022, 45(8): 1529-1537.

[10] Li QQ, Tao YM, Jiang Fanghua. Orbital stability and invariant manifolds on distant retrograde orbits around Ganymede and nearby higher-period orbits[J]. Aerospace, 2022, 9(8): 454.

[11] Zhang TX, Wu D, Jiang Fanghua, Zhou H. A new 3D shaping method for low-thrust trajectories between non-intersect orbits[J]. Aerospace, 2021, 8(11): 315.

[12] Wu D, Wang W, Jiang Fanghua, Li JF. Minimum-time low-thrust many-revolution geocentric trajectories with analytical costates initialization[J]. Aerospace Science and Technology, 2021, 119: 107146.

[13] Wu D, Jiang Fanghua, Li JF. Warm start for low-thrust trajectory optimization via switched system[J]. Journal of Guidance, Control, and Dynamics, 2021: 1-7.

[14] Wu D, Cheng L, Jiang Fanghua, Li JF. Rapid generation of low-thrust many-revolution earth-center trajectories based on analytical state-based control[J]. Acta Astronautica, 2021, 187: 338-347.

[15] Cheng L, Wang ZB, Jiang Fanghua, Li JF. Adaptive neural network control of nonlinear systems with unknown dynamics[J]. Advances in Space Research, 2021, 67(3): 1114-1123.

[16] Cheng L, Jiang Fanghua, Wang ZB, Li JF. Multiconstrained real-time entry guidance using deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 325-340.

[17] Chen SY, Jiang Fanghua, Li HY, Baoyin HX. Optimization for multitarget, multispacecraft impulsive rendezvous considering J2 perturbation[J]. Journal of Guidance Control and Dynamics, 2021, 44(10).

[18] 武迪, 闫翛然, 李海洋, 蒋方华. 火星探测器接近段器地组合导航方法[J]. 中国科学:技术科学, 2020, 50(09): 1150-1159.

[19] 迟哲敏, 李俊峰, 蒋方华, 宝音贺西. 变比冲连续小推力轨迹优化方法综述[J]. 飞控与探测, 2020, 3(04): 58-67.

[20] 程林, 蒋方华, 李俊峰. 深度学习在飞行器动力学与控制中的应用研究综述[J]. 力学与实践, 2020, 42(3): 267-276.

[21] Meng YZ, Li HN, Jiang Fanghua. Polynomial-based method for determining coast-terminating zero of fuel-optimal time-fixed trajectory[J]. Astrophysics and Space Science, 2020, 365(1): 8.

[22] Chi ZM, Wu D, Jiang Fanghua, Li JF. Optimization of variable-specific-impulse gravity-assist trajectories[J]. Journal of Spacecraft and Rockets, 2020, 57(2): 291-299.

[23] Chi ZM, Jiang Fanghua, Tang G. Optimization of variable-specific-impulse gravity-assist trajectories via optimality-preserving transformation[J]. Aerospace Science and Technology, 2020, 101: 105828.

[24] Cheng L, Wang ZB, Song Y, Jiang Fanghua. Real-time optimal control for irregular asteroid landings using deep neural networks[J]. Acta Astronautica, 2020, 170: 66-79.

[25] Cheng L, Wang ZB, Jiang Fanghua, Li JF. Fast generation of optimal asteroid landing trajectories using deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020: 1-1.

[26] Cheng L, Wang ZB, Jiang Fanghua, Li JF. An identifier-actor-optimizer policy learning architecture for optimal control of continuous-time nonlinear systems[J]. Science China-Physics Mechanics & Astronomy, 2020, 63(6): 264511.

[27] Cheng L, Li HN, Wang ZW, Jiang Fanghua. Fast solution continuation of time-optimal asteroid landing trajectories using deep neural networks[J]. Acta Astronautica, 2020, 167: 63-72.

[28] 于龙江, 蒋方华, 姜洋, 喜进军. 敏捷卫星一般轨迹主动推扫成像模式设计[J]. 航天器工程, 2019, 28(1): 27-34.

[29] Cheng L, Wang ZB, Jiang Fanghua. Real-time control for fuel-optimal Moon landing based on an interactive deep reinforcement learning algorithm[J]. Astrodynamics, 2019, 3(4): 375-386.

[30] Cheng L, Wang ZB, Jiang Fanghua, Zhou CY. Real-time optimal control for spacecraft orbit transfer via multiscale deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2436-2450.

[31] Yang HW, Tang G, Jiang Fanghua. Optimization of observing sequence based on nominal trajectories of symmetric observing configuration[J]. Astrodynamics, 2018, 2(1): 25-37.

[32] 倪彦硕, 蒋方华, 李俊峰. 航天动力学的数学方法[M]. 北京: 中国宇航出版社, 2018.

[33] Wu D, Song Y, Chi ZM, E ZB, Sun H, Baoyin HX, Jiang Fanghua. Problem A of the 9th China trajectory optimization competition: Results found at Tsinghua University[J]. Acta Astronautica, 2018, 150: 204-212.

[34] Tang G, Jiang Fanghua, Li JF. Fuel-optimal low-thrust trajectory optimization using indirect method and successive convex programming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 2053-2066.

[35] Li HY, Li JY, Jiang Fanghua. Dynamics and control for contactless interaction between spacecraft and tumbling debris[J]. Advances in Space Research, 2018, 61(1): 154-166.

[36] Jiang W, Li JF, Jiang Fanghua, Bernelli-Zazzera F. A simple method to design non-collision relative orbits for close spacecraft formation flying[J]. Science China-Physics Mechanics & Astronomy, 2018, 61(5): 054511.

[37] Chi ZM, Li HY, Jiang Fanghua, Li JF. Power-limited low-thrust trajectory optimization with operation point detection[J]. Astrophysics and Space Science, 2018, 363(6): 122.

[38] Ma PB, Wang TS, Jiang Fanghua, Mu JS, Baoyin HX. Autonomous navigation of Mars probes by single X-ray pulsar measurement and optical data of viewing Martian moons[J]. Journal of Navigation, 2017, 70(1): 18-32.

[39] Jiang Fanghua, Tang G, Li JF. Improving low-thrust trajectory optimization by adjoint estimation with shape-based path[J]. Journal of Guidance Control and Dynamics, 2017, 40(12): 3280-3287.

[40] Tang G, Jiang Fanghua. Capture of near-Earth objects with low-thrust propulsion and invariant manifolds[J]. Astrophysics and Space Science, 2016, 361(1).

[41] Jiang Fanghua, Tang G. Systematic low-thrust trajectory optimization for a multi-rendezvous mission using adjoint scaling[J]. Astrophysics and Space Science, 2016, 361(4).

[42] 余婧, 喜进军, 于龙江, 蒋方华. 敏捷卫星同轨多条带拼幅成像模式研究[J]. 航天器工程, 2015(02): 27-34.

[43] Zeng XY, Jiang Fanghua, Li JF, Baoyin HX. Study on the connection between the rotating mass dipole and natural elongated bodies[J]. Astrophysics and Space Science, 2015, 356(1): 29-42.

[44] Zeng XY, Jiang Fanghua, Li JF. Asteroid body-fixed hovering using nonideal solar sails[J]. Research in Astronomy and Astrophysics, 2015, 15(4): 597-607.

[45] Wu ZG, Jiang Fanghua, Li JF. Extension of frozen orbits and Sun-synchronous orbits around terrestrial planets using continuous low-thrust propulsion[J]. Astrophysics and Space Science, 2015, 360(1).

[46] Tang G, Jiang Fanghua, Li JF. Low-thrust trajectory optimization of asteroid sample return mission with multiple revolutions and moon gravity assists[J]. Science China-Physics Mechanics & Astronomy, 2015, 58(11).

[47] Ma PB, Jiang Fanghua, Baoyin HX. Autonomous navigation of Mars probes by combining optical data of viewing Martian moons and SST data[J]. Journal of Navigation, 2015, 68(6): 1019-1040.

[48] Li JY, Gong SP, Baoyin HX, Jiang Fanghua. Lunar orbit insertion targeting from the two-segment lunar free-return trajectories[J]. Advances in Space Research, 2015, 55(4): 1051-1060.

[49] Gong SP, Li JF, Jiang Fanghua. Interplanetary trajectory design for a hybrid propulsion system[J]. Aerospace Science and Technology, 2015, 45: 104-113.

[50] 李俊峰, 宝音贺西, 蒋方华. 深空探测动力学与控制[M]. 北京: 清华大学出版社, 2014.

[51] Wu ZG, Jiang Fanghua, Li JF. Artificial Martian frozen orbits and Sun-Synchronous orbits using continuous low-thrust control[J]. Astrophysics and Space Science, 2014, 352(2): 503-514.

[52] He J, Gong SP, Jiang Fanghua, Li JF. Time-optimal rendezvous transfer trajectory for restricted cone-angle range solar sails[J]. Acta Mechanica Sinica, 2014, 30(5): 628-635.

[53] Guo TD, Li JF, Baoyin HX, Jiang Fanghua. Pseudospectral methods for trajectory optimization with interior point constraints: verification and applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 2005-2017.

[54] Jiang Fanghua, Baoyin HX, Li JF. Practical techniques for low-thrust trajectory optimization with homotopic approach[J]. Journal of Guidance Control and Dynamics, 2012, 35(1): 245-258.

[55] Guo TD, Jiang Fanghua, Li JF. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization[J]. Acta Astronautica, 2012, 71: 38-50.

[56] 李俊峰, 蒋方华. 连续小推力航天器的深空探测轨道优化方法综述[J]. 力学与实践, 2011, 33(3): 1-6.

[57] 蒋方华, 陈杨, 刘跃聪, 宝音贺西, 李俊峰. 2010年国际深空探测轨道优化竞赛的清华大学解法[J]. 力学与实践, 2011, 33(3): 103-105.

[58] Guo TD, Jiang Fanghua, Baoyin HX, Li JF. Fuel optimal low thrust rendezvous with outer planets via gravity assist[J]. Science China-Physics Mechanics & Astronomy, 2011, 54(4): 756-769.

[59] 雪丹, 李俊峰, 蒋方华. 卫星在轨道平面内的可达范围研究[J]. 力学学报, 2010, 42(02): 337-342.

[60] Xue D, Li JF, Baoyin HX, Jiang Fanghua. Reachable domain for spacecraft with a single impulse[J]. Journal of Guidance Control and Dynamics, 2010, 33(3): 934-942.

[61] 蒋方华, 李俊峰, 宝音贺西. 基于不同天文标准计算地球引力对卫星轨道的影响[J]. 空间控制技术与应用, 2009(02): 38-41.

[62] Zhu KJ, Jiang Fanghua, Li JF, Baoyin HX. Trajectory optimization of multi-asteroids exploration with low thrust[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52(175): 47-54.

[63] Jiang Fanghua, Li JF, Baoyin HX, Gao YF. Two-point boundary value problem solutions to spacecraft formation flying[J]. Journal of Guidance Control and Dynamics, 2009, 32(6): 1827-1837.

[64] Jiang Fanghua, Li JF, Baoyin HX, Gao YF. Study on relative orbit geometry of spacecraft formations in elliptical reference orbits[J]. Journal of Guidance Control and Dynamics, 2008, 31(1): 123-134.

[65] Jiang Fanghua, Li JF, Baoyin HX. Approximate analysis for relative motion of satellite formation flying in elliptical orbits[J]. Celestial Mechanics & Dynamical Astronomy, 2007, 98(1): 31-66.