清华大学航天航空学院副院长,教授,博士生导师。2001年于山东大学取得学士和硕士学位,2005年在清华大学获得博士学位并留校工作任讲师,2008年任副教授,2013年破格晋升任教授。2010年入选清华大学221青年人才计划,2011年入选教育部新世纪优秀人才支持计划,2013年获国家自然科学基金优秀青年基金。曾获教育部自然科学一等奖(2008)、清华大学青年教师教学优秀奖(2014)、中国工程热物理学会吴仲华优秀青年学者奖(2014)等荣誉。主要研究领域为微纳尺度传热和先进技术热管理,发表学术论文150余篇,其中SCI论文100余篇。目前担任中国工程热物理学会传热传质分会青年工作委员会主任、亚洲热科学与工程联合会执行理事、2018年国际传热大会秘书长,担任《Scientific Reports》、《PLOS One》、《Advances in Materials Research》等期刊编委。

联系方式:
Tel/Fax:010-62794531; E-mail:caoby@tsinghua.edu.cn; 网站:http://www.heatenergist.org/

教育背景

1994-2001年在山东大学能源与动力工程学院获得学士和硕士学位

2001-2005年在清华大学航天航空学院获得博士学位

工作履历

2005.07-2008.11,清华大学航天航空学院讲师
2008.12-2013.11,清华大学航天航空学院副教授
2013.12- 至今,     清华大学航天航空学院教授
2016.06- 至今,     清华大学航天航空学院副院长

学术兼职

中国工程热物理学会传热传质分会青年委员会主任;亚洲热科学联合会执行理事;2018年国际传热大会秘书长;《Scientific Reports》(SCI-IF: 5.228)、《PLOS ONE》(SCI-IF: 3.057)、《Advances in Materials Research》(SCIE)等5个国际期刊编委;教育部/科技部科研基金和科技奖励、国家/北京市自然科学基金、国家发改委节能中心等部门专家。

研究领域

先进热管理技术、微纳尺度流动与传热、热质理论及其应用、传热优化理论与节能技术、传热传质过程的分子模拟等。

研究概况

主要研究领域为微纳尺度传热和先进技术热管理,发表学术论文150余篇,其中SCI论文100余篇。主持国家自然科学基金、国家重点研发计划、教育部人才基金、航天科技、交叉学科基金等十余项课题。目前担任中国工程热物理学会传热传质分会青年工作委员会主任、亚洲热科学与工程联合会执行理事、2018年国际传热大会秘书长,担任《Scientific Reports》、《PLOS One》、《Advances in Materials Research》等期刊编委。

奖励与荣誉

[1] 2015.07,清华大学优秀党建与思想政治工作者
[2] 2015.01,清华大学优秀教职工党支部书记
[3] 2014.08,中国工程热物理学会吴仲华优秀青年学者奖
[4] 2014.05,清华大学青年教师教学优秀奖
[5] 2013.09,国家自然科学基金优秀青年基金
[6] 2012.12,清华大学第五届青年教师教学大赛一等奖
[7] 2011.11,入选教育部新世纪优秀人才支持计划
[8] 2010.08,入选清华大学基础研究青年人才支持计划
[9] 2008.01,教育部自然科学奖一等奖
[10] 2006.10,中国工程热物理学会传热传质学术年会优秀论文奖一等奖

学术成果

发表学术论文150余篇,其中SCI收录100余篇,代表论文:
[1] J.H. Zou, B.Y. Cao*. Phonon thermal properties of graphene on h-BN from molecular dynamics simulations. Applied Physics Letters, 2017, 110: 103106
[2] Y.C. Hua, B.Y. Cao*. Anisotropic heat conduction in two-dimensional periodic silicon nanoporous films. The Journal of Physical Chemistry C, 2017, 121(9): 5293–5301
[3] Y.C. Hua, B.Y. Cao*. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Applied Thermal Engineering, 2017, 111: 1401-1408
[4] D.S. Tang, B.Y. Cao*. Ballistic thermal wave propagation along nanowires modeled using phonon Monte Carlo simulations. Applied Thermal Engineering, 2017, 117: 609–616
[5] X.M. Yang*, Y.H. Huang, B.Y. Cao*, A.C. To. Ultrahigh thermal rectification in pillared graphene structure with carbon nanotube-graphene intramolecular junctions. ACS Applied Materials & Interfaces, 2017, 9: 29?35
[6] B.Y. Cao*, W.J. Yao, Z.Q. Ye. Networked nanoconstrictions: An effective route to tuning the thermal transport properties of graphene. Carbon, 2016, 96: 711-719
[7] B.Y. Cao*, M. Yang, G.J. Hu. Capillary filling dynamics of polymer melts in nanopores: Experiments and rheological modelling. RSC Advances, 2016, 6: 7553-7559
[8] J.H. Zou, Z.Q. Ye, B.Y. Cao*. Phonon thermal properties of graphene from molecular dynamics using different potentials. The Journal of Chemical Physics, 2016, 145: 134705
[9] Z.Q. Ye, B.Y. Cao*. Nanoscale thermal cloaking in graphene by chemical functionalization. Physical Chemistry Chemical Physics, 2016, 18: 32952 - 32961
[10] Y.C. Hua, B.Y. Cao*. The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source. International Journal of Heat and Mass Transfer, 2016, 92: 995-1003
[11] Y.C. Hua, B.Y. Cao*. Ballistic-diffusive heat conduction in multiply-constrained nanostructures. International Journal of Thermal Sciences, 2016, 101: 126-132
[12] S.N. Li, B.Y. Cao*. Generalized variational principles for heat conduction models based on Laplace transform. International Journal of Heat and Mass Transfer, 2016, 103: 1176–1180
[13] S.N. Li, B.Y. Cao*. Lorentz covariance of heat conduction laws and a Lorentz-covariant heat conduction model. Applied Mathematical Modelling, 2016, 40: 5532-5541
[14] D.S. Tang, Y.C. Hua, B.Y. Cao*. Thermal wave propagation through nanofilms in ballistic-diffusive regime by Monte Carlo simulations. International Journal of Thermal Sciences, 2016, 109: 81-89
[15] D.S. Tang, Y.C. Hua, B.D. Nie, B.Y. Cao*. Phonon wave propagation in ballistic-diffusive regime. Journal of Applied Physics, 2016, 119: 124301
[16] M. Yang, B.Y. Cao*, W. Wang*, H.M. Yun, B.M. Chen. Experimental study on capillary filling in nanochannels. Chemical Physics Letters, 2016, 662: 137–140
[17] Z.Q. Ye, B.Y. Cao*, W.J. Yao, T.L. Feng, X.L. Ruan*. Spectral phonon thermal properties in graphene nanoribbons. Carbon, 2015, 93: 915-523
[18] R.Y. Dong, B.Y. Cao*. Superhigh-speed unidirectional rotation and its decoupled dynamics of a carbon nanotube in a sheared fluid. RSC Advances, 2015, 5: 88719 - 88724
[19] T.L. Feng, X.L. Ruan*, Z.Q. Ye, B.Y. Cao*. Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration. Physical Review B, 2015, 91(22): 224301
[20] R.Y. Dong, Y. Zhou, C. Yang*, B.Y. Cao*. Translational thermophoresis and rotational movement of peanut-like colloids under temperature gradient. Microfluidics and Nanofluidics, 2015, 19(4): 805-811
[21] B.Y. Cao*, R.Y. Dong. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid. The Journal of Chemical Physics, 2014, 140: 034703
[22] R.Y. Dong, B.Y. Cao*. Anomalous orientations of a rigid carbon nanotube in a sheared fluid. Scientific Reports, 2014, 4: 6120
[23] Z.Q. Ye, B.Y. Cao*, Z.Y. Guo. High and anisotropic thermal conductivity of body-centered tetragonal C4 calculated using molecular dynamics. Carbon, 2014, 66: 567-575
[24] Y.C. Hua, B.Y. Cao*. Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. International Journal of Heat and Mass Transfer, 2014, 78: 755-759
[25] M.K. Zhang, B.Y. Cao*, Y.C. Guo. Numerical studies on damping of thermal waves. International Journal of Thermal Sciences, 2014, 84: 9-20
[26] W.J. Yao, B.Y. Cao*, H.M. Yun, B.M. Chen. Effects of nanosized constriction on thermal transport properties of graphene. Nanoscale Research Letters, 2014, 9(1): 408
[27] B.Y. Cao*, J. Kong, Y. Xu, K.L. Yung, A. Cai. Polymer nanowire arrays with high thermal conductivity and superhydrophobicity fabricated by a nano-moulding technique. Heat Transfer Engineering, 2013, 34(2-3): 131-139
[28] G.J. Hu, B.Y. Cao*. Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling. Journal of Applied Physics, 2013, 114: 224308
[29] M.K. Zhang, B.Y. Cao*, Y.C. Guo. Numerical studies on dispersion of thermal waves, International Journal of Heat and Mass Transfer, 2013, 67: 1072-1082
[30] B.Y. Cao*, R.Y. Dong. Nonequilibrium molecular dynamics simulation of shear viscosity by a uniform momentum source-and-sink scheme. Journal of Computational Physics, 2012, 231(16): 5306-5316
[31] R.Y. Dong, B.Y. Cao*. Application of the uniform source-and-sink scheme to molecular dynamics calculation of the self-diffusion coefficient of fluids. International Journal for Numerical Methods in Engineering, 2012, 92: 229-237
[32] B.Y. Cao, J.F. Xie, S.S. Sazhin*. Molecular dynamics study on evaporation and condensation of n-dodecane at liquid-vapour phase equilibria. The Journal of Chemical Physics, 2011, 134(16): 164309
[33] B.Y. Cao*, Y.W. Li, J. Kong, H. Chen, Y. Xu, K.L. Yung, A. Cai. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer, 2011, 52(8): 1711-1715
[34] B.Y. Cao*, Y.W. Li. A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics. The Journal of Chemical Physics, 2010, 133(2): 024106
[35] B.Y. Cao*, J. Sun, M. Chen, Z.Y. Guo. Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: A review. International Journal of Molecular Sciences, 2009, 10(11): 4638-4706
[36] Q.W. Hou, B.Y. Cao*, Z.Y. Guo. Thermal gradient induced actuation in double-walled carbon nanotubes. Nanotechnology, 2009, 20(49): 495503
[37] B.Y. Cao*. Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme. The Journal of Chemical Physics, 2008, 129(17): 074106
[38] B.Y. Cao, Z.Y. Guo*. Equation of motion of phonon gas and non-Fourier heat conduction. Journal of Applied Physics, 2007, 102(5): 053503
[39] B.Y. Cao*, M. Chen, Z.Y. Guo. Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Physical Review E, 2006, 74(6): 066311
[40] B.Y. Cao, M. Chen*, Z.Y. Guo. Temperature dependence of the tangential momentum accommodation coefficient for gases. Applied Physics Letters, 2005, 86(9): 091905